
McSig - A Multimodal Collaborative Handwriting Trainer for Visually-Impaired People

Beryl Plimmer Rachel Blagojevic

Stephen Brewster & Andrew Crossan (Glasgow)

Peter Reid – Current work

Outline

- Haptics Basics
- Rationale
 - Why is writing important for a VI person
 - Why is a difficult thing to train
- How can we train users to draw a letter shape
 - One solution haptic trajectory playback
 - How good are people at recalling a trajectory they've been dragged through
- McSig

Haptic ~ Touch

- Haptics interact with the user via the sense of touch by applying forces, vibrations and/or motions to the user.
- Generally in a 3D space this is not touch screen type technology which is sensing pressure on a flat 2D interface
- Forces make it harder for the user to move the device in a particular direction
- Vibrations simulate the feedback from real objects
- Movements are used to rehearse the user's required action.

Devices

Phantom Premium

~ \$40,000

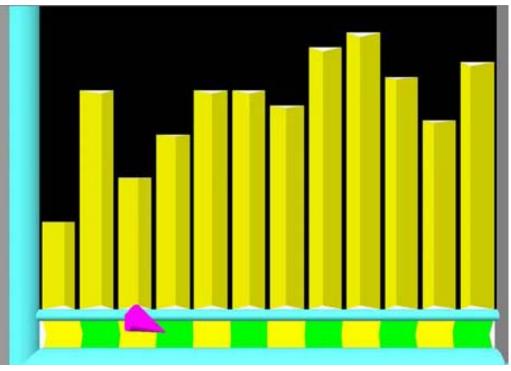
Dhantan One i \$4,000

Phantom Omni ~ \$4,000

dAb was introduced at SIGGRAPH 2001 in a paper by [Baxter 2001]

New – cheap device

- \$189 US
- Promoted as a games device

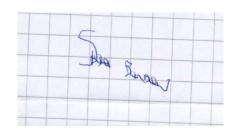


- Movie clips from Novint
- http://www.novint.com/novintfalcon.htm

Related work

Haptic Cow – Sarah Bailey (Glasgow)

SoundBar System. Bars are represented as recessed grooves, the SoundBar is located below the bars. When a segment of the SoundBar is touched with the PHANTOM (represented by the cone shaped object), a note proportional to the height of the bar immediately above is played.

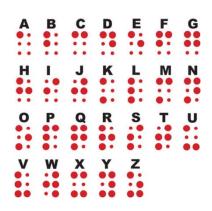

McGookin and Brewster (2006), SoundBar: exploiting multiple views in multimodal graph browsing,NordiCHI '06

Why do Visually Impaired People Need to Write?

- Signature
 - Difficult without visual feedback
 - Important for Job Applications, Legal documents etc.
 - One participant described her signature as 'resembling the meanderings of an inebriated fly'
- More general problem with spatial data
 - Presenting
 - Creating

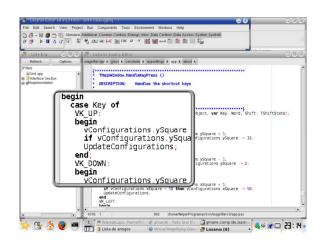
Monor

~ 7 Pox



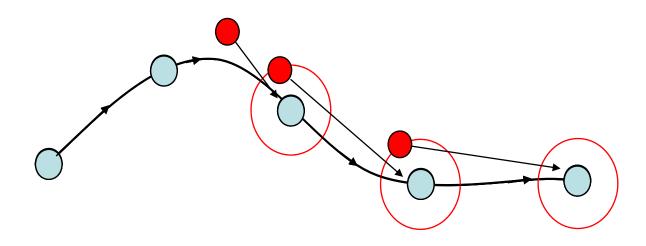
Traditional Accessible Technologies

- Text information
 - Tactile
 - Coded representations -Braille, Moon etc.
 - Optacon
 - Audiobooks
- Spatial data
 - Raised Paper
 - Dutch drawing boards


A	В	С	D	E	F
Λ	J	°C)	L	٢
G	н	I	J	К	L
ା	0		J	<	L
м	N	0	P	Q	R
	7	0	۷	1	
s	T	U	v	W	×
/	—	V	V	\cap	>
¥	z	AND	THE	•	?
	Z	Z	·	-•	っ
:	-	-	:	Ç	>.
•	•	• •			•

Accessible Computing

- Magnifiers
 - Need some sight
- Screen Readers
 - Read text from the screen
 - Not good for non-text information
- Dynamic Braille
- Non-Text or spatial data is very difficult to present non-visually
 - Maps, charts, graphs, diagrams, web pages



Force Feedback as an Accessibility Aid

- Guidance
 - Force effects on widgets
 - collaboration
- How can force feedback be used to convey spatial data
- Related work
 - Feygin (2002) Haptic vs haptic visual playback
 - Oakley (2003) Collaborative playback
 - Baillie (2007) Training veterinary students
- Our research question
 - Can trajectory playback techniques be used to communicate shape and trajectory information to visually impaired people?

Haptic Guidance

- Playback Controller
 - PID a standard control engineering algorithm
 - Minimise error between cursor position & target position
- Trajectory split into sample positions
- The user is dragged through a close approximation of the path

McSig: Multimodal, collaborative handwriting and signature training tool Haptic guidance and audio feedback

- - Based on Andy's previous work
- Teacher and student work synchronously on shared representation sat next to each other
- Teacher guides the student to learn letter shapes using words and actions
- Student holds PHANTOM Omni pen, teacher uses touchscreen
 - Teacher can move student's pen around the character shape
- Audio feedback as shape is drawn
 - Left/right movements: pan, up/down movements: pitch

McSig – system design

- Simulate standard school learning scenario
- Teacher can choose collaborative or free drawing mode
- Collaborative Playback mode: student dragged through shape as it is drawn by teacher
- Free Stencil mode: teacher draws letter which is used as a stencil, then student explores it
 - Can reduce constraining forces as student gets more experienced

McSig – first evaluation

- 1 blind adult
- Feedback key to learning
- Fully virtual display was poor
- Added Dutch drawing board shape is raised on the paper
- Can be felt with other hand

Formative testing

- 4 visually impaired adults (3 blind, 1 partially sighted)
- Started with playback mode and then moved on to stencil
- Finally drew the letter unsupported
- Stencil mode hard to use
 - Strengthened forces for shapes to give clearer path
 - Problem with Omni
- Audio feedback useful to some, teacher descriptions most useful
- Omni pen difficult to hold, plus pressing button whilst drawing tricky
 - Users not used to holding pens
 - Gave some pen training before main study

McSig evaluation

- Could McSig improve handwriting performance?
- Task designed with teachers
 - Some children almost no handwriting skills, some have good skills
 - 4 characters chosen after discussion with teachers
 - o, c, a, d, e
- Participants
 - 8 children 11-17 years old, read Braille, no other major disabilities
 - 3 partially sighted, 5 blind
- 4 stage study
 - Familiarization with McSig, then for each letter:
 - Pre-test
 - McSig training
 - Post-test

Familiarization and Pre-test

- Participants could feel setup, PHANTOM, mat, PC
- Spatial orientation
- Drew circle, horizontal and vertical lines
- Practised with the pen
- In pre-test got participants to draw each letter as best they could
 - Some unable to draw one or more of them

McSig Training and Post-test

- After pre-test teacher showed participant how to draw letter in Playback mode
 - Synchronous audio/haptic feedback
 - Experimenter wrote shape on screen, child felt it with PHANTOM and scored line on tactile sheet
 - Number of repeats based on child's confidence
- Post-test
 - Got participants to draw character using McSig but with no feedback
 - If participant could not draw it we trained and tested again
- Time-out after 20 mins
 - Stopped earlier if all letters done

Results – partially-sighted children

- Participants
 - All could read enlarged print
 - All had deteriorating sight but had learned to write when sight was better
 - Did not write now as sight too bad
- Familiarized very quickly, could all do circle, horizontal and vertical lines no problem
- One participant our letters in the pre-test Pre Post

Results – partially-sighted children

- One did a normal 'e' but did it the wrong way around
- Participants had eyes close to drawing surface but did not feel drawing surface with non-dominant hand
 - Wanted to use their sight
- All trained quickly and did all letters correctly in post-test
 - Completed within 20 mins
- Politely interested but not captivated

Results – blind children

- Participants
 - 5 totally blind
 - One lost her sight at 3 years, others blind from birth
- Familiarization took much longer
 - Pressure on pen too much/too little
- Interacted with drawing space very differently
 - Non-dominant hand for orientation in space
- All but one could draw circle and lines
- Before and after examples

"Mae"

"Mae" Age 14	0	c	a	d	e
Pre- test		Unable to do	Unable to do	Out of time	Out of time
Post- test				Out of time	Out of time

"Sue"

"Sue" Age 19	0	c	a	d	e
Pre- test	No data	\supset	Unable to do	Skipped	Unable to do
Post- test	No data	<u></u>		Skipped	

"Tam"

"Tam" Age 13	0	c	a	d	e
Pre- test	0	Unable to do	In his name	Unable to do	Out of time
Post- test	\circ		\mathcal{O}		Out of time

"Nik"

"Nik" Age 11	0	c	a	d	e
Pre- test	5	Formed backwards	?	Unable to do	Out of time
Post- test	6	\mathcal{C}	\bigcirc	\mathcal{S}	Out of time

"Ann"

"Ann" Age 17 Sight till 2-3yrs		c	A	4	e
Pre-test		Unable to do	In name		Unable to do
Post-test	G	С	d	J	Q

Results – blind children

- Skills varied a lot
 - Some knew letters in their names
- Mae couldn't create a circle in pre-test and knew no letter shapes
 - Did 2 rounds of training on 'c' and 3 on 'a' before she felt she could remember them
 - We timed out at 20 mins
 - Did well in post-test 'o', 'c' and 'a'
- Ann (sight for 2-3yrs) could do an 'o' and 'a' in pretest
 - Learned the others quickly
 - Scaled letters accurately
 - Training letters were around 6cm
 - She drew them at 1cm in post-test

Results – blind children

- Sue could do 'c', 'a' and 'e' in post-test
- Nik and Tam showed general improvements
- Suggests McSig could help them learn
- They were all very interested and expressed excitement at using the tool
 - Motivating for learning?

Discussion

- Results suggest that McSig could help children to learn
 - Especially blind children
 - A self-teaching tool would be very useful for learning at home
 - Even more challenging to design
 - How do you get input to computer when both hands busy on PHANTOM/drawing surface?
 - Voice is in theory possible but recognition rates would need to be fantastic!
- Why didn't stencil mode work?
 - No physical representation of the letter
 - Better PHANTOM?

Current Work

- Cursive handwriting and signatures
 - Support move from single letters to cursive
 - A signature can be created and then practised to keep it consistent over time
- Wider context
 - Could be used in any application where the teacher wants to guide student
 - Geometry, 2D and 3D shapes
 - Charts and graphs
 - Beacons?

Conclusions

- Hard for visually-impaired people to learn to handwrite
 - Signatures difficult to learn and keep consistent
 - Required for important aspects of life
- McSig: a collaborative tool that allows a teacher to guide a student to handwrite letter shapes
 - Dynamic haptic and audio feedback
- Can improve handwriting in 20 minute session
 - All blind students learned at least 2 new letters
 - Enjoyed the experience
- Now working on longer-term study to see how learning develops over time

McSig - A Multimodal Collaborative Handwriting Trainer for Visually-Impaired People

Stephen Brewster & Andrew Crossan Beryl Plimmer, Rachel Blagojevic

Demo Time!